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Introduction

NBA superstars like Lebron James and Kevin Durant make up some of the highest-paid individuals in the
US, taking home annual salaries upwards of $30 million from the NBA alone. Unlike a regular hourly wage
job, however, these salaries are determined based on a number of unique and rapidly changing factors.
Consequently, there is a great fascination with NBA players’ salaries and a lot of speculation on what factors
put these players at the top-earning bracket of their sport. Additionally, with an association that advocates
heavily for inequality, it is important to gain an understanding of the varying levels of over or underpayment
for players in the league and make predictions as to what their salaries should be. For this analysis we are
going to be studying how factors like; points per game, effective field goal percentage, age, and more, affect a
player’s salary in the NBA. As a complementary, we will also get a look at the levels of mispayment estimated
by our model. Through this we will attempt to identify the most significant factor(s) in determining an NBA
player’s salary. Our analysis will revolve around using multiple linear regression models to track a variety
of factors’ relationships with a player’s salary. We have downloaded the dataset for this model, created by
Fernando Blanco (2018), from kaggle. We cleaned the data up in excel, isolating for the specific response and
predictor variables we wanted. Using R, we imported the data and developed a regression model around it
using the players’ salaries as the response variable and studied the relationship. We will then use a variety of
testing methods to compare how our regression model changes at each step to eliminate predictor variables
that matter very little in the relationship until we are left with only the most significant variables. We have
decided to train our model on the data from the 2012-2016 NBA seasons and will be using the data from
the 2017 NBA season for model validation.

Exploratory Data Analysis

Dependent Variable

The dependent variable we have chosen for our study is the salary of each player selected. This salary is
purely based on what the NBA pays its players and does not include the additional money they may gain
from outside endorsements.
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We notice that the distribution of our Salary values are heavily right skewed which is understandable as
there are obviously fewer players earning the highest salaries and more players earning lower or entry level
salaries. To compensate for the skewness, will apply the apply the log function to the values of Salary.
This transformation has made the distribution for the Salary symmetric and no longer skewed, as seen on
the right. This will ensure that the residuals of our model will be Gaussian.



Independent Variables

For our independent variables we chose a variety of different player statistics including; age, points per game
(PPG), rebounds per game (RPG), assists per game (APG), minutes per game (MPG), and effective field
goal percentage (eFG). Age is simply each player’s age during each year of play, the per game statistics
(PPG,RPG, APG, MPG) were all calculated by summing each player’s respective values in each year and dividing
by the number of games they were active in. Lastly, the effective field goal percentage (eFG) was calculated
by %, where F'G is the number of Field Goals, 3P is the number of 3-Point Field Goals, and FGA
is the number of Field Goal Attempts (Basketball Reference, 2020). All of our chosen predictor variables

are continuous.

We naturally chose these predictors as we feel that they are likely the most important factors in allowing
players to earn top salaries. A basketball team wins by getting more points than their opponent in a game,
as more wins bring teams closer to a championship ring, it is logical that PPG and eFG will be extremely
influential in determining player salary due to their direct relation with points scored. A similar reasoning
can be applied to RPG and APG as assists and rebounds often turn over into points scored.

There are an extensive number of factors that may play a role in determining salary that we decided to not
include for a number of reasons. An example of which are Fouls. We decided to leave a score for fouls out
of our model because unlike PPG or RPG, human error and quick judgement calls heavily affect these values.
We often see things like higher value players not receiving the same foul call for a similar action taken by a
lower valued player. This apparent bias toward these players brings up controversy and so we decided that
fouls per game would not be a good predictor of player salary.
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Histogram of MPG Histogram of eFG
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From the histogram of the Age, we notice that its distribution is somewhat right-skewed, however, this is
negligible to our model. The histograms of PPG, RPG and APG have distributions that are all right skewed
with APG being the most right-skewed. This can all be explained in the same way as the skewed salary
distribution. PPG, RPG, and APG all share this skewness due to the decreasing amount of players who score
higher values in these categories. Similarly, Age sees its skewness since the majority of players are active only
for their healthiest years (20 - 30). Since the distributions of the covariates do not affect the error terms of
our model, we will leave them as is for now. Lastly we notice that the histograms showing the distributions
of MPG and eFG are symmetric which should be ideal for our model.

Model Development

With the decision of the transformed response variable and predictor variables, we can finally produce our
first model.
Im(formula = log(Salary) ~ Age + PPG + RPG + APG + MPG + eFG, data = nba)

Four Assumptions

To begin developing our model we first must make sure that our four essential assumptions are satisfied.
The first assumption is the linearity between our response and predictor variables, to check this we created
a scatter plot for each predictor compared to the response and analyzed the relationships we saw.
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We notice that the residual plots of the covariates, PPG, RPG, and APG, are showing a fanning pattern, which
violates the assumption of linearity. We conclude that this may be the result of their values being right
skewed. To fix this, we will apply the square root function to each of the covariates, PPG, RPG, and APG.
We will then create a new model with these transformations and check the residual plots of each covariate
again. Our new model is then,

Im(formula = log(Salary) ~ Age + sqrt(PPG) + sqrt(RPG) + sqrt(APG) + MPG + eFG, data =
nba)
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It appears now that all of our covariates, Age, sqrt (PPG), sqrt (RPG), sqrt (APG), MPG, and eFG all satisfy
this condition of linearity. That is, there is no clear pattern when plotting their values against the model’s
residuals. This implies randomness, which in turn suggests a linear relationship between the covariates and
response variables.

The slight change in the scatter of residuals we can see in our predictors; sqrt(PPG), sqrt(RPG), and
sqrt (APG), can be explained by the fact that relatively few players tend to earn higher scores in these
categories. This means we see fewer points on our graph and are thus less likely to see the same amount of
residual spread as we do at lower values where the majority of our data lies.

The bizarre looking shape we see in the residual plot of eFG is due to the fact that the majority of all
players in the NBA have relatively similar eFG scores (0.4 - 0.6). Much like our sqrt (PPG), sqrt (RPG), and
sqrt (APG) plots, the change in randomness we see is due to relatively few players having eFG values outside
of this cluster and thus we are less likely to see extreme errors at those values.

For the next assumption we are required to show that there is no relationship between our residual and fitted
values, that is, that it is independent of errors. To do this we plotted our residuals against our fitted values
and looked at what was displayed.



Residual plot
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We can see that there is no relation between the residuals and the fitted values of the model. Hence, the
variance of the residuals is the same for all the values of the covariates.

The sharp line we see at the lower end of this plot is due to the minimum salary the NBA must pay its
players. In turn this baseline means that as salaries get lower, it becomes impossible to underpay these
players and still meet the minimum requirement.

This brings us to our third assumption, homoscedasticity, that is, we want to see a constant variance of our
error values for all the values of the covariates. Again we plotted our residuals against the covariates and
studied the variance we saw at each step. As observed in the scatter plot in assumption 2, the variance of
the residuals appeared to be consistent across all values of the x-axis.

Finally, our last assumption requires that our error terms are normally distributed. This simply required us
to plot a normal quantile plot of our error terms and compare this to the line of fit.

Normal Q—-Q plot Histogram of Residuals
o
o 3 7 —
< 4 o —
12}
i) S
< <
b=}
2 o~ 4 >~ o
& g 81
o
2 g o
S °A 58
2
3 8 4
5 o S
o O o -
T T T T T T T T T T T T 1
-3 -2 -1 0 1 2 3 -2 -1 0 1 2 3
Normal Scores Residuals

As seen in the graphs above, our Q-Q plot and histogram of the residuals shows signs of normally distributed
error terms. This was accomplished through initially applying a log transformation to our response variable,
Salary, which in turn affected the error terms.

With our initial assumptions sorted out, we are now ready to move on to developing our model.

Backward Elimination

We first use Backward Elimination in hopes of removing insignificant covariates in our model. We will be
using a significance level of & = 0.05. Looking at the summary of our current model (Please see Appendix:
Model 2), we notice that sqrt (APG) has a low t-score and p-value > a. As a result of Backward Elimination,
we are going to drop the sqrt (APG) predictor variable from our model. Our new model is then,
Im(formula = log(Salary) ~ Age + sqrt(PPG) + sqrt(RPG) + MPG + eFG, data = nba)



Correlation Matrix and Interaction Terms

We now check the correlation matrix to possibly remove covariates with high correlation or add interaction
terms.

## Age sqrt(PPG) sqrt(RPG) MPG eFG
## Age 1.00000000 0.0373677 0.02727833 0.07976718 0.1439617
## sqrt(PPG) 0.03736770 1.0000000 0.59352400 0.91842172 0.2661506
## sqrt(RPG) 0.02727833 0.5935240 1.00000000 0.64561051 0.2805158
## MPG 0.07976718 0.9184217 0.64561051 1.00000000 0.2139825
## eFG 0.14396168 0.2661506 0.28051578 0.21398246 1.0000000

We notice a high, nearly perfect, correaltion between our covariates sqrt (PPG) and MPG, with a correlation
of 0.91842172. This is no surprise since players who score the most points, tend to be the ones with the
most playtime. Looking at the summary of our current model (Please see Appendix: Model 3), we notice
that the p-value of the covariate sqrt (PPG) is much less than that of the p-value of MPG. This tells us that
sqrt (PPG) is much more significant to our model than MPG is. Hence we have decided to remove the predictor
variable MPG from the model.

We also notice a somewhat high correlation between sqrt (PPG) and sqrt (RPG). Since there is no empirical
indication of a relation between PPG and RPG, we decided to resolve this multicollinearity by adding an inter-
action term, sqrt (PPG*RPG). Since the addition of this interaction term may itself increase multicollinearity,
we are going to center the data for sqrt (PPG) and sqrt(RPG), calling them sPPG and sRPG, respectively.
Then, this will also change the interaction term to I(sPPGxsRPG). Our new model is then,

Im(formula = log(Salary) ~ Age + sPPG + sRPG + eFG + I(sPPG*sRPG), data = nba)

Criterion Table

With the remaining predictor variables, we want to determine which combination produces the best possible
model. To achieve this we will create a criterion table with every combination to compare their Sum of

Square Residuals, Coeflicient of Determination, Rgdj7 and Akaike’s Information Criterion.

Based on the results of the criterion table (Please see Appendix: Criterion Table), the model that we will
select contains Age, sPPG, sRPG, eFG, and the interaction term I (sPPGxsRPG) as its only predictor variables.
Through examining the AIC of each model, we can observe that our current model has the lowest AIC out
of all the possible models. Our model also has the smallest SS,.s. Minimizing the SS,.s is important as
the lower the S5, the higher the SS,.;,. This means the model is better fit to the data. Furthermore,
the model we selected has the highest R?ldj and the decrease of it compared to the R? criterion is small,
implying the significance of the covariates in minimizing the SS,.s. In the end we favored the full model as
we deemed having a combination of lower SS,..s and lower AIC to be the most important factors in selecting
our final model. Hence our final model is,

Im(formula = log(Salary) ~ Age + sPPG + sRPG + eFG + I(sPPG*sRPG), data = nba)

Model Validation

To validate our model, we first obtained an independent dataset. We used the NBA player statistics in the
2017 season, which was from the same source as our original model development dataset. We felt like this
was a good selection for our validation dataset as it will test how well the model can predict salary in future
years as our model development dataset was taken from 2013-2016 NBA seasons.

Through calculations in R we found the M SPFE to be 0.4656555. Compared to the M S,..; from our model,
which is 0.4479502, we find that the difference is 0.0177053. These results helped further prove the predictive
ability of our model as the difference between these 2 values was incredibly small being less than 0.018.



Diagnostics
Improper Functional Form

The first thing that we want to check is for improper functional form. This is done through plotting the
residuals against the predictor variables and fitted values.
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As seen in the Residual plots, there is a random pattern across all predictor variables and fitted values which
indicates that the functional form is adequate. This is to say that we do see a subtle fanning effect in the
residual plot against the fitted values. This implies that our model has a difficulty predicting values in the
higher end. This is expected because we initially saw that the values of Salary are right skewed, meaning
that there are not many samples on the higher end. This is not problematic because it is difficult to control
the variance with a limitation on the data. Even with all the values fixed, it it still hard to control the



variance.

Influential Observations

Cook's Distance Plot
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Through running calculations to find any outlying observations for salary, our tests concluded that obser-
vation 233 was the only outlying observation for NBA player Salary. The | DFFITS; | of this observation

was 0.6374419, which is greater than 2\/”; = 0.117681, resulting in that observation being influential. Also,
the Cook’s distance for this observation is 0.0669484 which can be seen in the graph above as being signifi-
cantly larger than the 20th percentile, further indicating the influence of this observation. We can conclude
from this information that there is 1 influential outlying observation. Calculating the DFBET AS for each
predictor variable we found that observation 233 did not have an influence on any of our model coefficients
as their respective DF BET A values were all less than % = 0.04804307. Through looking into the dataset
we noticed there was an error in the salary given to the player as in reality he only made about 980K for
the 2016 season, but the dataset mistakenly recorded that he made 19 million dollars. However, since our
dataset consists of 1733 observations the impact of this singular observation on predicting Salary is overall
not significant.

R Diagnostic Plots

We can generate the diagnostic plots for a model with all of the raw variables the diagnostic plots for our
final model to see how improved it is.
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Im(formula = Salary Age + PPG + RPG + APG + MPG + eFG, data = nba)
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Model Improvement

As we can see in our final model, all diagnostic plots show significant improvement from the original model
we created. Both the Residuals vs Fitted and Scale-Location plots appear more randomly scattered and
have lost the linear/curvilinear relationships they had displayed in our original plots. Additionally, in the
Normal Q-Q plot, the extreme right skewed distribution we saw previously has been lost and we see almost
all points lying along the Q-Q line as required. This provides further confirmation that our final model is
significantly better at predicting NBA Salaries than our original model.

Residuals vs Fitted

As we can see here and saw while confirming our assumptions, there is no discernible pattern between the
residuals and fitted values from our model. Additionally, there appears to be an equal spreading of our
residual values around a nearly horizontal line, thus providing confirmation that our linearity assumption
has been satisfied.

Scale-Location

This scatterplot allows us to test for homoscedasticity in our model and it is evident from this plot that the
standardized residuals take on a randoming spreading around the central line. The slight curve we see in
our central line is likely negligible as the individual points appear to hold a constantly random scatter, thus
we can conclude that we have homoscedasticity (constant variance of errors) in our model.

Normal Q-Q

The residuals on the Normal Q-Q plot lie nearly perfectly in line with the line generated by the Q-Q plot
with very little left or right skewness. As such, we can confirm that our normality assumption has not been
violated and we remain to have normally distributed error terms.

Residuals vs Leverage

It is clear from this plot that no observations we studied ended up outside of the Cook’s distance as no
points lie in the extreme upper or lower right corners. This suggests that we do not have any influential
observations that may interfere with our final model and its prediction capabilities.

Multicollinearity
VIF Table
| final.model | Age | sPPG | sRPG | eFG I(sPPG*sRPG)
VIF

1.028772 | 1.574066 | 1.600244 | 1.159510 1.049168
VIF 1.282352

To determine if we had any serious cases of multicollinearity in our model we computed the VIF values for
each predictor as well as their mean. We found that all predictors had VIF values less than 10, additionally,
the mean of these values, 1.282352, is not significantly larger than 1. Thus we can conclude that there is no
indication of serious multicollinearity in our model.
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Conclusion

Usefulness

In a highly dynamic sport like basketball, there is a huge variety of factors which make a player seem more
valuable to a team. In the NBA, when these factors affect how much money each player can take home, it
becomes very difficult to discern which of these factors are the most significant. We developed this model
to help get rid of this confusion and pin down exactly what factors put the most money in these players’
pockets by the end of the year. By using a player’s Age, PPG, RPG, eFG, and an interaction term between
PPG and APG, our model can be used to make predictions on what a player’s salary should be based off
of their in game statistics. As a result of its predictive ability, our model can also allow us to determine
whether a player is being under or overpaid in a specific year. Additionally, incoming NBA players can see
the factors we selected as most significant to increasing a salary and gear their playstyle toward it, advancing
their skills in each of these areas to maximize their earnings.

Final Model Interpretation

Our final linear regression model has the form,

—

log(Salary;) = 14.10367708 + 0.04696916Age, + 0.572281601/PPG;+
0.37321508y/ RPG; — 0.62644642eFG; + 0.12300309/PPG,RPG;

— Salary, = exp(14.10367708 -+ 0.04696916Age, + 0.572281601/PPG,+
0.37321508\/RPG; — 0.62644642eFG; + 0.12300309/PPG;RPG;)

— Salary, = exp(14.10367708) exp(0.04696916Age, ) exp(0.57228160/PPG;)
exp(0.37321508/RPG;) exp(—0.62644642eFG; ) exp(0.12300309/PPG,RPG;)

Then, in the context of our data, if our model were additive, the intercept would not have an interpretation,
however our model has a multiplicative relationship between the response and predictor variables. This means
that the change in the mean response, Salary, is always multiplicative by a factor of exp(14.10367708).

As for Age, a unit increase in Age, will increase the mean response, Salary, by a multiplicative factor
of exp(0.04696916). This is also similar to eFG, where its unit increase will increase the mean response,
Salary, by a multiplicative factor of exp(—0.62644642).

The difference is in the change in PPG and RPG. The change in the mean response, Salary,
with a unit squared increase in PPG when RPG is held constant is by a multiplicative factor
of exp(0.57228160) exp(0.12300309RPG).  Conversely, the change in the mean response, Salary,
with a unit squared increase in RPG when PPG is held constant is by a multiplicative factor of
exp(0.37321508) exp(0.12300309PPG).

Of all the covariates, we see that the multiplicative increase of the unit squared increase in PPG has the
greatest effect on the response variable. This is expected as we discussed, PPG is directly related to score
in which determines the winning of games.

Limitaions

Due to the constant inflation in the world, the salary of NBA players is increasing at a higher rate than all
of our predictor variables. In the last 10 years alone, the salary cap each team was allotted to spend on
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their players has almost doubled from 58 million dollars in 2010 to 115 million dollars in 2020. Due to such
a significant increase, this may result in our model returning underpredictions for players’ salaries in future
years.

An interesting factor that is much too complex for our model to track is the star power of each potential
player. Ultimately, the NBA is an entertainment business, as such, players that are more famous are more
likely to bring in a greater number of viewers and thus receive higher salaries in turn. A player’s fame can
be tracked by things like; their number of social media followers, number and scale of outside endorsements,
as well as their ‘hype’ in the highschool scene. Despite this, these factors are extremely complicated and
cannot be completely tracked, meaning that they could not be included in our model.

Another area our model cannot account for are the obscure and uncountable skills required by players that
allow the teams to take home wins. Things like leadership, court presence, court vision, and instinct all
work toward making these players shine above others and help them take in larger salaries. These factors
however, have no definitive way to measure them, rendering us unable to add them into our model. The
only recommendation that can be made regarding these factors is to work at improving them to the best of
each player’s ability as they are integral to performing well as a team.

14
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Appendix

library(tidyverse)
nba <- readr::read_csv(file="NBA2016.csv")

Exploratory Data Analysis

Dependent Variable

hist(nba$Salary, main = "Histogram of Salary", xlab = "Salary")
hist(log(nba$Salary), main = "Histogram of log(Salary)", xlab = "log(Salary)")

Independent Variables

hist(nba$Age, main = "Histogram of Age", xlab = "Age")
hist(nba$PPG, main = "Histogram of PPG", xlab = "PPG")
hist(nba$RPG, main = "Histogram of RPG", xlab = "RPG")
hist(nba$APG, main = "Histogram of APG", xlab = "APG")
hist(nba$MPG, main = "Histogram of MPG", xlab = "MPG")
hist(nba$eFG, main = "Histogram of eFG", xlab = "eFG")

Model Development

Model 1

modell <- Im(formula = log(Salary) ~ Age + PPG + RPG + APG + MPG + eFG, data = nba)
summary (modell)

##

## Call:

## 1m(formula = log(Salary) ~ Age + PPG + RPG + APG + MPG + eFG,
#it data = nba)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.06699 -0.45476 0.01788 0.46492 2.95843

##

## Coefficients:

#t Estimate Std. Error t value Pr(>ltl)

## (Intercept) 12.662505 0.153665 82.403 < 2e-16 **x
## Age 0.044409 0.003920 11.329 < 2e-16 **x*
## PPG 0.069607 0.006359 10.947 < 2e-16 ***
## RPG 0.080997 0.009080 8.921 < 2e-16 ***
## APG 0.005026 0.012528 0.401 0.688

## MPG 0.020697 0.004456  4.645 3.66e-06 **x*
## eFG -0.352026 0.272624 -1.291 0.197

## ——-
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## Signif. co
##

des:

0 ’*xx? 0.001 ’**x> 0.01 %’ 0.05 7.

3 0.1 ) )

## Residual standard error: 0.6604 on 1726 degrees of freedom

## Multiple R-squared:

## F-statisti

Cc:

Four Assumptions

# Assumption
modell.res =

plot(nba$ige,
abline (0, 0)
plot (nba$PPG,
abline(0, 0)
plot (nba$RPG,
abline (0, 0)
plot (nba$APG,
abline(0, 0)
plot (nba$MPG,
abline (0, 0)
plot (nba$eFG,
abline (0, 0)

1

resid(modell)

modell

modell

modell

modell

modell

modell

.res,

.res,

.res,

.res,

.res,

.res,

0.5357, Adjusted R-squared:
332 on 6 and 1726 DF,

0.5341

p-value: < 2.2e-16

ylab = "Residuals", xlab=
ylab = "Residuals", xlab=
ylab = "Residuals", xlab=
ylab = "Residuals", xlab=
ylab = "Residuals", xlab=
ylab = "Residuals", xlab=
Model 2

"Age", main
"PPG", main
"RPG", main
"APG", main
"MPG", main
"eFG", main

1

"Residual

"Residual

"Residual

"Residual

"Residual

"Residual

plot™)
plot")
plot™)
plot")
plot")

plot™)

= log(Salary) ~ Age + sqrt(PPG) + sqrt(RPG) + sqrt(APG) +

= log(Salary) ~ Age + sqrt(PPG) + sqrt(RPG) + sqrt(APG) +

Max

t value Pr(>|tl)

907 < 2e-16
007 < 2e-16
065 < 2e-16

840 7.83e-15

.163 0.24924

979 7.21e-05

.584 0.00985

model2 <- 1lm(formula

MPG + eFG, data = nba)
summary (model2)
##
## Call:
## 1m(formula
#it MPG + eFG, data = nba)
##
## Residuals:
## Min 1Q Median 3Q
## -2.0433 -0.4638 0.0295 0.4727 3.2209
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 12.046490 0.160819 74.
## Age 0.044079  0.004005 11.
## sqrt (PPG) 0.418557 0.046171 9.
## sqrt(RPG) 0.319382 0.040738 7.
## sqrt(APG) -0.052216 0.045304 -1
## MPG 0.022302 0.005605 3.
## eFG -0.734714 0.284322 -2
## ——-
## Signif. codes: O ’**x> 0.001 ’*x’ 0.

##

01 )%
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## Residual standard error: 0.6699 on 1726 degrees of freedom
## Multiple R-squared: 0.5222, Adjusted R-squared: 0.5206
## F-statistic: 314.4 on 6 and 1726 DF, p-value: < 2.2e-16

model2.res = resid(model2)

plot(nba$Age, model2.res, ylab = "Residuals", xlab= "Age", main = "Residual plot")

abline (0, 0)

plot(sqrt(nba$PPG), model2.res, ylab
main = "Residual plot")

abline(0, 0)

plot(sqrt (nba$RPG), model2.res, ylab = "Residuals", xlab= "sqrt(RPG)",
main = "Residual plot")

abline (0, 0)

plot(sqrt(nba$APG), model2.res, ylab
main = "Residual plot")

abline(0, 0)

plot (nba$MPG, model2.res, ylab = "Residuals", xlab= "MPG", main = "Residual plot")

abline (0, 0)

plot(nba$eFG, model2.res, ylab

abline(0, 0)

"Residuals", xlab= "sqrt(PPG)",

"Residuals", xlab= "sqrt(APG)",

"Residuals", xlab= "eFG", main = "Residual plot")

# Assumptions 2 & 3
model2.fit = fitted(model2)

plot(model2.fit, model2.res,
ylab="Residuals", xlab="Fitted Values",
main="Residual plot")

abline (0, 0)

# Assumption 4
model2.stdres = rstandard(model?2)

qgnorm(model2.stdres,
ylab="Standardized Residuals",
xlab="Normal Scores",
main="Normal Q-Q plot")

gqline(model2.stdres)

hist(model2.res, main = "Histogram of Residuals", xlab = "Residuals")

Backward Elimination

Model 3

model3 <- Im(formula = log(Salary) ~ Age + sqrt(PPG) + sqrt(RPG) + MPG + eFG, data = nba)
summary (model3)

##

## Call:

## 1m(formula = log(Salary) ~ Age + sqrt(PPG) + sqrt(RPG) + MPG +
#t eFG, data = nba)
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Residuals:

Min 1Q Median 3Q Max
-2.0412 -0.4613 0.0349 0.4686 3.2527
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 12.004844 0.156722 76.600 < 2e-16 **x
Age 0.043372 0.003958 10.959 < 2e-16 **x
sqrt (PPG) 0.411972 0.045820 8.991 < 2e-16 *xx
sqrt (RPG) 0.340514 0.036383 9.359 < 2e-16 **¥x
MPG 0.019371  0.004995  3.878 0.000109 **x*
eFG -0.660820 0.277026 -2.385 0.017167 =*
Signif. codes: O ’*%x’ 0.001 ’x*x’ 0.01 ’x’ 0.056 ’.” 0.1’ ’ 1
Residual standard error: 0.67 on 1727 degrees of freedom

Multiple R-squared: 0.5219, Adjusted R-squared: 0.5205
F-statistic: 377 on 5 and 1727 DF, p-value: < 2.2e-16

Correlation Matrix and Interaction Terms

covaraiates <- cbind(nba$Age, sqrt(nba$PPG), sqrt(nba$RPG), nba$MPG, nba$eFG)
colnames(covaraiates) <- c("Age", "sqrt(PPG)", "sqrt(RPG)", "MPG", "eFG")
cor (covaraiates)

sPPG

Model 4

sqrt (nba$PPG) - mean(sqrt(nba$PPG))

sRPG = sqrt(nba$RPG) - mean(sqrt(nba$RPG))

modeld <- 1m(formula

log(Salary) ~ Age + sPPG + sRPG + eFG + I(sPPG*sRPG), data

summary (model4d)

##

## Call:

## lm(formula = log(Salary) ~ Age + sPPG + sRPG + eFG + I(sPPG x*
#t sRPG), data = nba)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.97849 -0.46860 0.02916 0.46324 3.01724

##

## Coefficients:

## Estimate Std. Error t value Pr(>lt|)

## (Intercept) 14.103677 0.164189 85.899 < 2e-16 **x
## Age 0.046969 0.003928 11.957 < 2e-16 *x*
## sPPG 0.572282 0.022174 25.809 < 2e-16 *x*
## sRPG 0.373215 0.034379 10.856 < 2e-16 **x
## eFG -0.626446 0.277337 -2.259 0.024 x*
## I(sPPG * sRPG) 0.123003 0.028527 4.312 1.71e-05 **x

##
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## Signif. codes: O ’**xx’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1

##

## Residual standard error: 0.6693 on 1727 degrees of freedom
## Multiple R-squared: 0.5228, Adjusted R-squared: 0.5215
## F-statistic: 378.5 on 5 and 1727 DF, p-value: < 2.2e-16

Criterion Table

Criteria for all the possible models

Independent Variable SSres R? Rg di AIC

None 395704.7 0 0 9411.601
Age 1546.904 | 0.04586114 | 0.04530994 | -192.8662
sPPG 898.4849 | 0.4458096 0.4454894 | -1134.407
sRPG 1140.523 0.296519 0.2961126 | -721.0298
eFG 1566.838 | 0.0335657 | 0.03300739 | -170.6766
I(sPPG*sRPG) 1617.776 | 0.002147151 | 0.00157069 | -115.2336
Age, sPPG 840.3669 | 0.4816571 0.4810578 | -1248.295
Age, sSRPG 1076.079 | 0.3362683 0.335501 -819.8261
Age, eFG 1508.462 | 0.06957214 | 0.0684965 | -234.4765
Age, I(sPPG*sRPG) 1538.97 | 0.05075491 | 0.04965751 | -199.7776
sPPG, sRPG 843.4773 | 0.4797386 0.4791371 | -1241.892
sPPG, eFG 898.4321 0.4458422 0.4452015 | -1132.509
sPPG, I(sPPG*sRPG) 890.1314 | 0.4509621 0.4503274 | -1148.594
sRPG, eFG 1138.891 0.297526 0.297526 | -721.5121
sRPG, I(sPPG*sRPG) 1139.373 | 0.2972288 0.2964163 | -720.7791
eFG, I(sPPG*sRPG) 1556.687 | 0.03982709 | 0.03871706 | -179.941
Age, sPPG, sRPG 786.0719 | 0.5151466 0.5143053 | -1362.042
Age, sPPG, eFG 839.6632 0.4820912 0.4811926 | -1247.747
Age, sPPG, I(sPPG*sRPG) 826.468 0.49023 0.4893455 | -1275.197
Age, sRPG, eFG 1076.06 0.3362802 0.3351286 | -817.857
Age, sRPG, I(sPPG*sRPG) 1072.225 0.3386457 0.3374982 | -824.0444
Age, eFG, I(sPPG*sRPG) 1493.601 | 0.07873857 | 0.07714009 | -249.6344
sPPG, sRPG, eFG 842.5678 | 0.4802996 0.4793978 | -1241.762
sPPG, sRPG, I(sPPG*sRPQG) 837.9335 0.483158 0.4822612 | -1251.32
sPPG, eFG, I(sPPG*sRPG) 889.602 0.4512886 0.4503365 | -1147.625
sRPG, eFG, I(sPPG*sRPG) 1137.094 | 0.2986344 0.2974175 | -722.2488
Age, sPPG, sRPG, eFG 781.9366 | 0.5176972 0.5165808 | -1369.183
Age, sPPG, sRPG, I(sPPG*sRPG) 775.8941 0.5214243 0.5203165 | -1382.627
Age, sPPG, eFG, I(sPPG*sRPG) 826.4003 | 0.4902718 0.4890919 | -1273.339
Age, sRPG, eFG, I(sPPG*sRPG) 1071.98 0.3387971 0.3372666 | -822.4413
sPPG, sRPG, eFG, I(sPPG*sRPG) 837.6505 0.4833326 0.4821366 | -1249.905
Age, sPPG, sRPG, eFG, I(sPPG*sRPG) | 773.6086 0.522834 0.5214525 | -1385.739

combo0 = 1lm(log(Salary)~0, data = nba)

combol = 1lm(log(Salary)~sPPG, data = nba)

combo2 = 1lm(log(Salary)~sRPG, data = nba)

combo3 = 1m(log(Salary)~I(sPPG*sRPG), data = nba)
combo4 = 1lm(log(Salary)~ Age, data = nba)

combo5 = 1lm(log(Salary)~ eFG, data = nba)

combol2 = Im(log(Salary)~sPPG+ sRPG, data = nba)
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combol3 = 1m(log(Salary)~sPPG+ I(sPPG#sRPG), data = nba)
combol4 = 1m(log(Salary)~sPPG+ Age, data = nba)
combol5 = 1m(log(Salary)~sPPG+ eFG, data = nba)
combo23 = 1m(log(Salary)~sRPG+ I(sPPG*sRPG), data = nba)
combo24 = 1lm(log(Salary)~sRPG+ Age, data = nba)
combo25 = 1lm(log(Salary)~sRPG+ eFG, data = nba)
combo34 = 1m(log(Salary)~I(sPPG*sRPG) + Age, data = nba)
combo35 = 1lm(log(Salary)~I(sPPG*sRPG) + eFG, data = nba)
combo45 = 1m(log(Salary)~Age+ eFG, data = nba)

combo123 = 1m(log(Salary)~sPPG+ sRPG + I(sPPG*sRPG), data = nba)
combol124 = 1m(log(Salary)~sPPG+ sRPG + Age, data = nba)

combo125 = 1m(log(Salary)~sPPG+ sRPG + eFG, data = nba)

combo134 = 1m(log(Salary)~sPPG+ I(sPPG*sRPG) + Age, data = nba)
combo135 = 1m(log(Salary)~sPPG+ I(sPPG#sRPG) + eFG, data = nba)
combo145 = 1m(log(Salary)~sPPG+ Age + eFG, data = nba)

combo234 = 1m(log(Salary)~sRPG + I(sPPG*sRPG)+ Age, data = nba)
combo235 = 1m(log(Salary)~sRPG + I(sPPG*sRPG)+ eFG, data = nba)
combo245 = 1m(log(Salary)~sRPG+ Age + eFG, data = nba)

combo345 = 1m(log(Salary)~I(sPPG*sRPG)+ Age + eFG, data = nba)

combo1234 = 1m(log(Salary)~sPPG+ sRPG + I(sPPG*sRPG) + Age, data = nba)
combo1235 = 1m(log(Salary)~sPPG+ sRPG + I(sPPG*sRPG) + eFG, data = nba)
combo1245 = 1Im(log(Salary)~sPPG+ sRPG + Age + eFG, data = nba)

combo1345 = Im(log(Salary)~sPPG + I(sPPG*sRPG) + Age + eFG, data = nba)

combo2345 = Im(log(Salary)~sRPG + I(sPPG*sRPG) + Age +eFG, data = nba)
combo12345 = 1m(log(Salary)~sPPG+ sRPG + I(sPPG*sRPG)+ Age + eFG, data = nba)

#comboO

s <- summary(comboO) $sigma

SSres <- sum(comboO$residuals™2)

Rsq <- summary(comboO)$r.squared

Rsq_adj <- summary(comboO)$adj.r.squared
p_prime <- length(comboO$coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combol

s <- summary(combol)$sigma

SSres <- sum(combol$residuals™2)

Rsq <- summary(combol)$r.squared

Rsq_adj <- summary(combol)$adj.r.squared
p_prime <- length(combol$coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo2

s <- summary(combo2)$sigma

SSres <- sum(combo2$residuals™2)

Rsq <- summary(combo2)$r.squared

Rsq_adj <- summary(combo2)$adj.r.squared
p_prime <- length(combo2$coefficients)

n <- length(log(nba$Salary))
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AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo3

s <- summary(combo3)$sigma

SSres <- sum(combo3$residuals™2)

Rsq <- summary(combo3)$r.squared

Rsq_adj <- summary(combo3)$adj.r.squared
p_prime <- length(combo3$coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#comboy,

s <- summary(combo4)$sigma

SSres <- sum(combo4$residuals™2)

Rsq <- summary(combo4)$r.squared

Rsq_adj <- summary(combo4)$adj.r.squared
p_prime <- length(combod4$coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combob

s <- summary(combo5)$sigma

SSres <- sum(combob5$residuals™2)

Rsq <- summary(combo5)$r.squared

Rsq_adj <- summary(combob)$adj.r.squared
p_prime <- length(combo5$coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime

#combo12

s <- summary(combol2)$sigma

SSres <- sum(combol2$residuals™2)

Rsq <- summary(combol2)$r.squared

Rsq_adj <- summary(combol2)$adj.r.squared
p_prime <- length(combol2$coefficients)

n <- length(log(nba$Salary))

C <- SSres/s”2 + 2*p_prime - n

AIC <- nxlog(SSres) - n¥log(n) + 2*p_prime
#combol3

s <- summary(combol3)$sigma

SSres <- sum(combol3$residuals”2)

Rsq <- summary(combol3)$r.squared

Rsq_adj <- summary(combol3)$adj.r.squared
p_prime <- length(combol3$coefficients)

n <- length(log(nba$Salary))

C <- SSres/s”2 + 2*p_prime - n

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combol4

s <- summary(combol4)$sigma

SSres <- sum(combol4$residuals™2)

Rsq <- summary(combol4)$r.squared

Rsq_adj <- summary(combol4)$adj.r.squared
p_prime <- length(combol4$coefficients)

n <- length(log(nba$Salary))

C <- SSres/s”2 + 2*p_prime - n

AIC <- nxlog(SSres) - n*log(n) + 2*p_prime
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#combo1b5

s <- summary(combolb)$sigma

SSres <- sum(combol5$residuals™2)

Rsq <- summary(combol5)$r.squared

Rsq_adj <- summary(combol5)$adj.r.squared
p_prime <- length(combol5$coefficients)

C <- SSres/s”2 + 2*p_prime - n

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo23

s <- summary(combo23)$sigma

SSres <- sum(combo23$residuals”2)

Rsq <- summary(combo23)$r.squared

Rsq_adj <- summary(combo23)$adj.r.squared
p_prime <- length(combo23$coefficients)

C <- SSres/s”2 + 2%p_prime - n

AIC <- nxlog(SSres) - n*log(n) + 2*p_prime
#combo24

s <- summary(combo24)$sigma

SSres <- sum(combo24$residuals™2)

Rsq <- summary(combo24) $r.squared

Rsq_adj <- summary(combo24)$adj.r.squared
p_prime <- length(combo24$coefficients)

C <- SSres/s”2 + 2*p_prime - n

AIC <- nxlog(SSres) - n*log(n) + 2*p_prime
#combo2b

s <- summary(combo25)$sigma

SSres <- sum(combo25%residuals”2)

Rsq <- summary(combo25) $r.squared

Rsq_adj <- summary(combo25)$adj.r.squared
p_prime <- length(combo25%coefficients)

C <- SSres/s”2 + 2%p_prime - n

AIC <- nxlog(SSres) - n*log(n) + 2*p_prime
#combo3y4

s <- summary(combo34)$sigma

SSres <- sum(combo34$residuals~2)

Rsq <- summary(combo34) $r.squared

Rsq_adj <- summary(combo34)$adj.r.squared
p_prime <- length(combo34$coefficients)
AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo35

s <- summary(combo35)$sigma

SSres <- sum(combo35$residuals”2)

Rsq <- summary(combo35)$r.squared

Rsq_adj <- summary(combo35)$adj.r.squared
p_prime <- length(combo35$coefficients)
AIC <- nxlog(SSres) - n¥log(n) + 2*p_prime
#combo4b

s <- summary(combo45)$sigma

SSres <- sum(combo45$residuals”2)

Rsq <- summary(combo4b) $r.squared

Rsq_adj <- summary(combo45)$adj.r.squared
p_prime <- length(combo45$coefficients)

C <- SSres/s”2 + 2%p_prime - n
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AIC <- n*log(SSres) - n*log(n) + 2*p_prime

#combo123

s <- summary(combo123)$sigma

SSres <- sum(combol23$residuals”2)

Rsq <- summary(combol123)$r.squared

Rsq_adj <- summary(combol23)$adj.r.squared
p_prime <- length(combol23$coefficients)
AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo124

s <- summary(combol24)$sigma

SSres <- sum(combol24$residuals™2)

Rsq <- summary(combol24)$r.squared

Rsq_adj <- summary(combol24)$adj.r.squared
p_prime <- length(combol24$coefficients)
AIC <- nxlog(SSres) - n*log(n) + 2*p_prime
#combo125

s <- summary(combol25)$sigma

SSres <- sum(combol25$residuals”2)

Rsq <- summary(combol25)$r.squared

Rsq_adj <- summary(combol25)$adj.r.squared
p_prime <- length(combol25$coefficients)
AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo134

s <- summary(combol134)$sigma

SSres <- sum(combol34$residuals”2)

Rsq <- summary(combo134)$r.squared

Rsq_adj <- summary(combol34)$adj.r.squared
p_prime <- length(combol34$coefficients)
AIC <- n*log(SSres) - n¥log(n) + 2*p_prime
#combo135

s <- summary(combo135)$signma

SSres <- sum(combol135$residuals™2)

Rsq <- summary(combol35)$r.squared

Rsq_adj <- summary(combol35)$adj.r.squared
p_prime <- length(combol35$coefficients)
AIC <- nxlog(SSres) - n*log(n) + 2*p_prime
#combo145

s <- summary(combol45)$sigma

SSres <- sum(combol45$residuals”2)

Rsq <- summary(combol145)$r.squared

Rsq_adj <- summary(combol45)$adj.r.squared
p_prime <- length(combol45$coefficients)
AIC <- n*log(SSres) - n¥log(n) + 2*p_prime
#combo234

s <- summary(combo234)$sigma

SSres <- sum(combo234$residuals”2)

Rsq <- summary(combo234)$r.squared

Rsq_adj <- summary(combo234)$adj.r.squared
p_prime <- length(combo234$coefficients)
AIC <- nxlog(SSres) - n¥log(n) + 2*p_prime
#combo235

s <- summary(combo235)$sigma
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SSres <- sum(combo235$residuals™2)

Rsq <- summary(combo235)$r.squared

Rsq_adj <- summary(combo235)$adj.r.squared
p_prime <- length(combo235$coefficients)
AIC <- nxlog(SSres) - n*log(n) + 2*p_prime
#combo245

s <- summary(combo245) $sigma

SSres <- sum(combo245$residuals”2)

Rsq <- summary(combo245)$r.squared

Rsq_adj <- summary(combo245)$adj.r.squared
p_prime <- length(combo245$coefficients)
AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo345

s <- summary(combo345)$sigma

SSres <- sum(combo345$residuals”2)

Rsq <- summary(combo345)$r.squared

Rsq_adj <- summary(combo345)$adj.r.squared
p_prime <- length(combo345$coefficients)
AIC <- n*log(SSres) - n*log(n) + 2*p_prime

#combo1234

s <- summary(combol1234)$sigma

SSres <- sum(combol234$residuals™2)

Rsq <- summary(combo1234)$r.squared

Rsq_adj <- summary(combol1234)$adj.r.squared
p_prime <- length(combol234$coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo1235

s <- summary(combo1235)$sigma

SSres <- sum(combol1235$residuals”2)

Rsq <- summary(combo1235)$r.squared

Rsq_adj <- summary(combol1235)$adj.r.squared
p_prime <- length(combol1235$coefficients)

n <- length(log(nba$Salary))

AIC <- nxlog(SSres) - n*log(n) + 2*p_prime
#combo1245

s <- summary(combol1245)$sigma

SSres <- sum(combol245$residuals™2)

Rsq <- summary(combol1245)$r.squared

Rsq_adj <- summary(combol245)$adj.r.squared
p_prime <- length(combol245$coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo1345

s <- summary(combol1345)$sigma

SSres <- sum(combol1345$residuals™2)

Rsq <- summary(combo1345)$r.squared

Rsq_adj <- summary(combol345)$adj.r.squared
p_prime <- length(combol1345$coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime
#combo2345
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s <- summary(combo2345) $sigma

SSres <- sum(combo2345$residuals™2)

Rsq <- summary(combo2345)$r.squared

Rsq_adj <- summary(combo2345)$adj.r.squared
p_prime <- length(combo2345%coefficients)

n <- length(log(nba$Salary))

AIC <- n*log(SSres) - n*log(n) + 2*p_prime

#combo12345

s <- summary(combo12345)$sigma

SSres <- sum(combol12345%residuals”2)

Rsq <- summary(combo12345)$r.squared

Rsq_adj <- summary(combo12345)$adj.r.squared
p_prime <- length(combo12345%coefficients)

n <- length(log(nba$Salary))

AIC <- nxlog(SSres) - n*log(n) + 2*p_prime

Final Model

final.model <- model4d
summary (final .model)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = log(Salary) ~ Age + sPPG + sRPG + eFG + I(sPPG *

sRPG), data = nba)
Residuals:
Min 1Q Median 3Q Max
-1.97849 -0.46860 0.02916 0.46324 3.01724
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 14.103677 0.164189 85.899 < 2e-16 **x

Age 0.046969 0.003928 11.957 < 2e-16 ***

sPPG 0.572282 0.022174 25.809 < 2e-16 **¥x

sRPG 0.373215 0.034379 10.856 < 2e-16 **¥x

eFG -0.626446  0.277337 -2.259 0.024 =

I(sPPG * sRPG) 0.123003 0.028527 4.312 1.71e-05 **x*
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’%’ 0.05 ’>.” 0.1’ ’ 1
Residual standard error: 0.6693 on 1727 degrees of freedom

Multiple R-squared: 0.5228, Adjusted R-squared: 0.5215
F-statistic: 378.5 on 5 and 1727 DF, p-value: < 2.2e-16

Model Validation

nba2 <- readr::read_csv(file="NBA2017.csv")
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psPPG = sqrt (nba2$PPG) - mean(sqrt(nba2$PPG))
psRPG = sqrt(nba2$RPG) - mean(sqrt(nba2$RPG))

modelp = lm(formula = log(Salary) ~ Age + psPPG + psRPG + eFG + I(psPPG#psRPG), data

mspe = sum(resid(modelp)~2)/length(log(nba2$Salary))

Diagnostics

# Improper Functional Form Check
final .model.res = resid(final.model)

plot(nba$Age, final.model.res, ylab = "Residuals", xlab= "Age",
main = "Residual plot")

abline(0, 0)

plot(sPPG, final.model.res, ylab = "Residuals", xlab= "sPPG",
= "Residual plot")

abline (0, 0)

plot(sRPG, final.model.res, ylab = "Residuals", xlab= "sRPG",
main = "Residual plot")

abline(0, 0)

plot(nba$eFG, final.model.res, ylab = "Residuals", xlab= "eFG",
main = "Residual plot")

abline(0, 0)

plot (I(sPPG#sRPG), final.model.res, ylab = "Residuals", xlab= "I(sPPG*sRPG)",
main = "Residual plot")

abline (0, 0)

final .model.fit = fitted(final.model)

plot(final.model.fit, final.model.res,
ylab="Residuals", xlab="Fitted Values",
main="Residual plot")

abline (0, 0)

# Statistical test for outliers
t <- rstudent(final.model)
Pii <- hatvalues(final.model)

n <- length(log(nba$Salary))

alpha <- 0.05

p_prime = length(coef (final.model))
t_crit <- gt(l-alpha/(2+%n),n-p_prime-1)
which(abs(t) > t_crit)

# DFFITS
dffits <- dffits(final.model) [233]

cooks <- cooks.distance(final.model) [233]

# Cooks distance D17

plot(cooks.distance(final .model), pch=23, bg=’green’, cex=2, ylab="Cook’s Distance",

main = "Cook’s Distance Plot")

# Diagnostic Plots
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layout (matrix(c(1,2,3,4),2,2))
plot(Ilm(formula = Salary ~ Age + PPG + RPG + APG + MPG + eFG, data = nba))

layout (matrix(c(1,2,3,4),2,2))
plot(final.model)

# Multicollinearity
library(car)

vif <- vif(final.model)
meanvif <- mean(vif)
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Project Contribution

We are satisfied with each group members’ contributions to the final project.
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